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Abstract—The rate at which information can be exchanged
between nodes in a hybrid network is investigated. The network
includes n ad hoc nodes and b base stations, where the ad hoc
nodes can share information through the wired infrastructure
in addition to wireless ad hoc communication. The per-node
throughput scaling achievable in this hybrid network as n (and
b) grows was studied in previous work for both one-dimensional
and two-dimensional networks. This work completes this previous
work in three ways. First, the wired network is modeled more
realistically where the base stations are only connected to their
nearest neighbors with finite bandwidth links as opposed to a fully
connected network with infinite bandwidth. Second, through cut-
set methods, we show upper bounds on the throughput which
matches the lower bounds for a wide range of values of b. Finally,
by establishing a new result on the maximum of a sequence of
Poisson random variables (which is of independent interest), we
improve previous lower bounds in the extreme case where the
number of base stations scale almost on the same order with the
number of ad hoc nodes, and also show a matching upper bound
in that case for one-dimensional networks.

I. INTRODUCTION

Consider a wireless ad hoc network where n nodes are
placed in a two-dimensional region, and are randomly matched
into n source-destination pairs. In [1], Gupta and Kumar
showed that the rate of information that can be shared by
each pair scales as 1/

√
n, which shows that the capacity of

wireless networks does not scale well. Successive works to [1]
try to improve this scaling by considering cases not assumed
in the original network or communication model, such as node
mobility [2], a sophisticated physical layer scheme [3], etc.

One perhaps more straightforward way to increase the
capacity of an ad hoc network is to add infrastructure, i.e., an
overlay wired network which helps carry information between
the wireless nodes. In that case the network includes b base
stations in addition to n wireless nodes, where the base stations
are connected through a wired network. This type of a network
is commonly referred to as a “hybrid network” [4], [5], and
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the capacity that can be achieved by ad hoc nodes in a hybrid
network is the problem of interest in this paper.

The scaling of capacity in hybrid networks has been studied
in a number of works under different network and commu-
nication models starting with [4], [6]. Some of these works
point to the same observation that whether or not infrastructure
improves capacity scaling depends on how the number of base
stations b scales as compared to n. In particular, the works of
[4], [7], [8] show that the per-node throughput scaling of 1/

√
n

remains the same if b grows at most with
√
n. Only after that

point, does the capacity start to increase. On the other hand,
[6], [9] studies the special case where b = Θ(n), and explore
the possibility of providing each pair Θ(1) throughput. In
particular, [9] shows that this is indeed possible for a fraction
of node pairs arbitrarily close to one. In other related work, the
multicast capacity in a hybrid network is studied in [10], while
[11] extends this work to the case where the wireless nodes are
mobile. Finally, [12] studies the case where the base stations
are equipped with multiple antennas, and fading is assumed
for the wireless channel.

Another work which studies capacity scaling in hybrid
networks is [13]. Compared to other work in this area, two
major differences in [13] are the interference model assumed,
and the fact that one-dimensional hybrid networks are studied
in addition to two-dimensional networks. Most of the work
in hybrid networks use the simpler Protocol Model [1] for
treating interference between wireless transmissions, where it
is assumed that wireless transmissions cause no interference
outside a certain radius from the transmitter and the same fixed
rate for each active transmission can be achieved as long as
this interference radius condition is satisfied. [13] uses a more
realistic model which takes into account all of the interference
power coming from the rest of the network and uses a model
where the rate achieved is a function of the received signal-to-
interference-and-noise-ratio (SINR). In addition, their results
show that, in contrast to two-dimensional networks, the added
infrastructure provides increased capacity even for a small
number of base stations in one-dimensional hybrid networks,
where pure ad hoc capacity is 1/n. In particular, they show
that nodes in a one-dimensional hybrid network can achieve a
per-node throughput that scales as b/n. This linear increase
is shown to hold for b log b 6 n. In fact the same result
also applies to two-dimensional networks; however, note that
only when b grows faster than

√
n, does b/n provide a better

throughput than pure ad hoc scaling of 1/
√
n for the 2-D case.

In this paper, we assume the same realistic interference
model in [13], and study both 1-D and 2-D hybrid networks.
Our results improve and complement the results in [13] in
three ways. First, we assume a more realistic wired network,
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where base stations are only connected to their nearest neigh-
bors with wired links of finite bandwidth f(n) which grows
with n. This shows how the bandwidth limitations in the wired
network can also constrain the throughput as opposed to the
case in [13] where the wired network is assumed to have
infinite capacity. Second, note that the results in [13] represent
achievable results, i.e., they are shown by a construction
providing the stated throughput values. Hence, it is of interest
to consider whether these results can be further improved. Our
second contribution is to show upper bounds on capacity by
exploiting cut-set results adopted from recent work [14]. Our
upper bounds show that the lower bounds shown in [13] are
indeed tight for the range b log b 6 n. Finally, we study the
case where b log b > n. By establishing a new result on the
maximum of a sequence of Poisson random variables (with
slowly growing mean values), we show that the achievable
results for this range can be further improved, and in the one-
dimensional case, match the upper bound we prove separately
for this range of values.

The rest of the paper is organized as follows. Section II
presents the network and communication model and the main
results, which consists of lower and upper bounds. Section III
provides a sketch of how these bounds are obtained. The cases
of 1-D and 2-D networks are studied in Sections IV and V,
respectively, and Section VI is the conclusion.

II. MODEL AND THE MAIN RESULTS

A. Network Model

The hybrid network we model consists of static ad hoc
nodes and base stations. We consider both one-dimensional
and two-dimensional networks. The 1-D network is inside
the interval [0, n], and the 2-D network is inside the square
[0,

√
n]× [0,

√
n] (see Figs. 1, 2). Ad hoc nodes are distributed

randomly according to a homogeneous Poisson point process
with density λ = 1, so there are n nodes in the network
on average in both 1-D and 2-D cases. Base stations are
placed regularly in the network with a total of b(n) base
stations, where b(n) → ∞, as n grows. For the 1-D network,
the base stations are on a wired linear network with each
base station connected to its nearest neighbors. In the 2-D
case, the base stations are on the vertices of a square grid
network. The capacity of each wired link is f(n) < ∞,
where f(n) → ∞, as n grows. Ad hoc nodes are matched
into source-destination pairs uniformly at random such that
each node is the destination for exactly one source node, and
is the source for exactly one destination node. Base stations
are neither the source nor the destination of any flow of
information, and simply help carry the traffic between ad hoc
node pairs.

B. Channel Model

The communication over the wireless channel is modeled
such that, when node A transmits with transmit power P , the
received power at node B is

Prcv,B = P/dαAB ,

f(n) bps

0 n

f(n)

Fig. 1. The one-dimensional hybrid network consists of randomly placed
ad hoc nodes (represented by dots) and regularly placed base stations in the
interval [0, n]. The wired links between base station pairs can each carry f(n)
bits per second.

n

n

f(n)

f(n)

Fig. 2. The two-dimensional hybrid network consists of randomly placed ad
hoc nodes (represented by dots) and regularly placed base stations on a square
grid network inside the square [0,

√
n] × [0,

√
n]. The wired links between

base station pairs can each carry f(n) bits per second.

where dAB is the distance between nodes A,B, and α > 1
in 1-D, α > 2 in 2-D, is the path loss exponent. The received
signal-to-interference-plus-noise ratio (SINR) at B is then

SINRB =
Prcv,B

N0 + IB
, (1)

where N0 is the power in the additive white Gaussian noise
(AWGN) at the receiver, and IB is the interference received at
node B due to other transmissions in the network following
the same path loss model. The same model is used for all
wireless communications including communications between
a node and a base station. The transmit power at the base
stations can be higher than the ad hoc nodes; however, as will
be seen in the analysis, the only requirement is that the base
station can connect to the nearest ad hoc nodes.

The rate of information that can be sent from node A to B
over the wireless link is a function of SINRB . In this paper,
we assume an SINR threshold model, where the transmission
from A to B is successful if SINRB > γ for some threshold
γ > 0. In that case the rate of information that can be sent from
A to B is W = log2(1 + γ) bits per second, i.e., a constant
rate independent of n is achieved. This SINR model is more
realistic than the Protocol Model employed in previous work



on hybrid networks [4], [10]. The rate of information on any
wired link is f(n) bps.

C. Main Results

Based on the above network and channel models, our main
results in this paper are given in the following two theorems
for the 1-D and 2-D hybrid networks, respectively. 1

Theorem 1: Consider a one-dimensional hybrid network
inside the interval [0, n], where ad hoc nodes are placed
according to a Poisson point process with density λ = 1, and
b(n) base stations are regularly placed. The number of base
stations b(n) → ∞, as n → ∞ with b(n) = O(n). The links
between base stations have a capacity of f(n) bits per second.
The per-node throughput shared by ad hoc nodes T (n) in this
network is upper-bounded as

T (n) =


O(min{ b

n ,
f
n}), b log b = O(n),

O

(
min

{ log( log b
n/b )

log b
, f
n

})
, otherwise,

with high probability (w.h.p.), i.e., with probability one as n →
∞. Furthermore, this upper bound is achievable w.h.p.

Theorem 2: Consider a two-dimensional hybrid network
inside the square [0,

√
n] × [0,

√
n], where ad hoc nodes are

placed according to a Poisson point process with density
λ = 1, and b(n) base stations are placed on the vertices of
a square grid wired network with capacity of f(n) bits per
second on each link. The average per-node throughput T (n)
in this network is upper-bounded as

T (n) =

O( 1√
n
), b = O(

√
n)

or
√
bf = O(

√
n),

O(min{ b
n ,

√
bf
n }), b = w(

√
n), b log b = O(n)

and
√
bf = w(

√
n),

O
(
min

{√
n
b

log( log b
n/b )

log b
,
√
bf
n

})
, b log b = w(n)

and
√
bf = w(

√
n).

w.h.p. The upper bounds for the first two cases are achievable.
For the last case (i.e., for b log b = w(n) and

√
bf = w(

√
n))

we have the following lower bound:

T (n) = Ω
(
min

{ log( log b
n/b )

log b
,

√
bf

n

})
w.h.p.

Remarks: Although the conditions and the expressions for
the throughput values look complicated (especially for the 2-D
case), the overall picture can be easily summarized. First of all,
note that in almost all cases, the throughput is the minimum

1The following order notation is used. f(n) = O(g(n)) if there exists a
constant k such that f(n) 6 kg(n) for n sufficiently large (for all n > n0

for some n0). f(n) = Ω(g(n)) if g(n) = O(f(n)). f(n) = Θ(g(n))
if f(n) = O(g(n)), and g(n) = O(f(n)). f(n) ∼ g(n) if f/g → 1,
f = o(g) if f/g → 0, which is equivalent to g = w(f). Finally, we say
f(n) = O(g(n)) w.h.p. if P (f(n) 6 kg(n)) → 1 for some k.

of two values, the first depending only on the number of
base stations b and the second depending on the wired link
bandwidth f and/or b. If, as assumed in [13], f is taken to be
infinity, then we are left with only the first expression.

Second, an important condition is whether b log b = O(n) is
true or not. Roughly, this means that we have some throughput
expression for a wide range of b values, but when b scales
almost on the same order with n, the throughput value
switches to another phase. In that case, the simple b/n value
is no longer true and we have a more complicated expression.

The only difference in 2-D is the fact that pure ad-hoc
communication already achieves a scaling of 1/

√
n and when

b = O(
√
n) or

√
bf = O(

√
n) is true, the added infrastructure

does not improve on this value. Only when these thresholds
are exceeded (by a fast enough scaling of f, b), do we start to
see throughput values that depend on b, f and in that case we
have similar results with 1-D.

III. PROOF OVERVIEW

Our main results provide both lower and upper bounds on
the per-node throughput. The upper bounds are proved using a
cut-set technique, and the lower bounds are proved by showing
a construction which achieves the stated throughput. For the
upper bounds, we briefly explain the idea behind the cut-set
method. For the lower bounds, we sketch the constructions
used for both proofs, and motivate why they achieve the stated
throughput values.

A. Cut-set Upper Bounds on Throughput

Consider a graph representing a communication network
where the vertices are the nodes, and the edges are the
communication links with their associated bandwidth values.
If the set of vertices is partitioned into two subsets (cuts), the
cut-set is the set of edges connecting one subset to the other,
i.e., the set of edges crossing the cut. Then one can add the
available rate (bandwidth) on all crossing edges, which gives
a quick upper bound on how many bits can be carried from
the nodes in the first subset to the nodes in the second subset.

In our case, an edge in the graph is either a wired link
between two base stations or a wireless link. The wired links
can be easily represented by edges with their given bandwidth
values. For wireless links, however, one should consider the
interference caused by simultaneous transmissions. This can
be done by considering the communication model given in
Section II.B. In particular, “wireless” edges crossing a given
cut can be drawn between node pairs which collectively satisfy
the SINR condition on each link. A more formal definition of
cut-set for an ad hoc network can be found in [14]. Here, it
suffices to say that for a wired edge, the bandwidth is f(n) bps,
whereas a constant rate is achieved on a crossing wireless link
(if it is active), which can be taken as one without affecting
the scaling results. An example is shown in Fig. 3.

B. Constructions for Achievability Results

In our constructions, the network is considered as being
divided by the base stations into b regions, called “cells”.
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Fig. 3. The cut Γ divides the network into two parts, Γl,Γr . We are interested
in how many bits can be carried from nodes in Γl to Γr . One wired edge
crosses the cut resulting in f(n) bits per second. Although there may be
three wireless connections across the cut, due to interference, the connection
between nodes S2, R2 is not active as it interferes with the connection from
S1 to R1. Each wireless edge has a constant rate. Hence, the cut capacity for
Γ is 2 + f , which is an upper bound on how many bits can be carried from
nodes in Γl to nodes in Γr .

Hence, there are b cells each with roughly n/b nodes. A source
communicates to its destination in three steps. It first delivers
the packet to the closest base station through multihop connec-
tion (upload phase). The message is then carried through the
wired network to the destination base station, i.e., the closest
base station to the destination node (wired phase), which then
delivers the message to the destination node (download phase).

What determines the throughput achieved by this construc-
tion is the relaying load in each phase. Here we take the 1-D
case as an example. In the upload and download phases, the
nodes have to relay packets from nodes only in that cell, so
the number of nodes in a cell determines that cell’s relaying
load. Each cell has roughly n/b nodes, and it can be shown
that for most values of b, even the busiest cell has at most
a constant factor of n/b nodes. What serves this load is a
wireless link of constant rate, which translates to a per-node
rate on the order of b/n bits per second. In the wired phase, the
information belonging to the whole network is carried. Hence,
a single wired link of capacity f bps may need to carry data
for all n nodes, which gives an achievable rate of f/n bps.
The smaller of these two values, min{b/n, f/n}, determines
the overall achievable per-node throughput.

The only exception to the above result is when the number
of base stations grow such that it is no longer true that
b log b = O(n). In that case, one can show that the number of
nodes in the busiest cell deviates from the mean, which results
in the throughput value stated in Theorem 1 for the second
case. A very similar three-step construction is used for the 2-
D case, resulting in the same expressions for the upload and
download phases. The wired phase brings the term

√
bf/n in

the 2-D case. Finally, in the 2-D case, the capacity of pure ad
hoc communication is already 1/

√
n, hence the construction

described is used only when it achieves a throughput better
than 1/

√
n.

IV. ONE-DIMENSIONAL NETWORK

Theorem 1 given in Section II-C is our main result for the
one-dimensional hybrid network. Before we prove the upper

and lower bounds, we state and prove a key result which is
used for both 1-D and 2-D cases.

The regularly placed b base stations can be thought of as
dividing the network into b equal size “cells”. In 1-D, each cell
is a subinterval of length n/b, [0, n/b] being the first cell (see
Fig. 5). In 2-D, the region [0,

√
n]× [0,

√
n] is divided into b

cells, where each cell is a square of size
√
n/b×

√
n/b (see

Fig. 7). Consider each base station as serving the nodes inside
its corresponding cell. As noted in Section III, the overall
achievable per-node throughput depends on the maximum
number of nodes in any cell, i.e., the number of nodes in the
busiest cell, which we denote by Mb. The following lemma
states how this number scales with b. This key result is what
enables us to improve the previous achievable results in [13]
for the case b log b = w(n).

Lemma 1: Suppose there are b(n) base stations with
b(n) → ∞, as n → ∞, and b(n) = O(n). Let Xi be
the number of nodes in the ith cell, 1 6 i 6 b, and let
Mb = max{X1, X2, · · · , Xb}. Then,

1) If b log b = O(n), then for some c < ∞ independent of
n, P (Mb ≤ cn/b) → 1.

2) Let

h(b) =
log b

log( log b
n/b )

(2)

If b log b = ω(n), then for any ε > 0, P
(
(1− ε)h(b) <

Mb ≤ (1 + ε)h(b)
)
→ 1.

Proof:
1) Note that {Xi, 1 6 i 6 b} are i.i.d. Poisson random

variables with mean n/b. Then, using a Chernoff bound
argument, for any c > 0, and s > 0

P (Xi > cn/b) ≤ E(exp(sXi))/ exp(cn/b), 1 6 i 6 b

where E(exp(sXi)) = exp((es − 1)n/b). Then, using
s = 1,

P (Xi > cn/b) ≤ 1

exp((c+ 1− e)n/b)
, 1 6 i 6 b

Then,

P (Mb ≤ cn/b) ≥
(
1− 1

exp((c+ 1− e)n/b)

)b

(3)

Given b log b = O(n), by definition, there exists some
k > 0 independent of n, such that for some n0 > 0,
b log b ≤ kn, for n > n0. Hence, for b sufficiently large,
n/b ≥ log b/k. Choosing c = k + 2,

P (Mb ≤ cn/b) ≥
(
1− 1

exp((c+ 1− e)n/b)

)b

≥
(
1− 1

exp((k + 3− e) log b/k)

)b

=

(
1− 1

b(k+3−e)/k

)b

→ 1, b → ∞.



2) Note that the sequence of random variables {Xi, 1 6
i 6 b}, are i.i.d. Poisson random variables with mean
λb = n/b, i.e., the mean changes with b. Hence, a
triangular array approach is more appropriate. For a
given b, denote the sequence {X(b)

i , 1 6 i 6 b}, and
Mb = max{X(b)

i , 1 6 i 6 b}. Let Fb(x) = P (X
(b)
i ≤

x) be their common distribution function. It is known
that in the case where λb = λ is constant, there is no
limiting distribution and Mb converges to one of two
consecutive integers [15]. On the other hand, when λb

grows with b, it is shown in [16] that the maximum Mb

exhibits two different behaviors depending on the growth
rate of λb. The proof in the first part shows that Mb is
bounded by a constant factor of λb when λb = Ω(log b),
which is consistent with the result in [16]. In the case
where λb = o(log b), [16] shows that Mb converges to
one of two integers, as would be with constant mean
λb = λ [15]. In other words, when λb = o(log n), there
is a sequence of integers Ib such that

P (Mb ∈ {Ib, Ib + 1}) → 1, as b → ∞. (4)

However, it is of interest here to consider a question
left open in the literature on the maximum of Poisson
random variables, which is how Mb, i.e., Ib scales when
λb = o(log b). Note that for constant λb = λ it is shown
in [17] that Ib ∼ log b/ log log b, which is independent
of the value of λ.
Here, we study the asymptotic behavior of Ib by adopt-
ing a similar technique to that used in [17] for constant
λb. This proof is given in the Appendix.

Proof of Theorem 1:
The proof is divided into two parts. The first part shows the

upper bound by cut-set arguments. The second part shows the
achievability result by presenting a construction.

A. Upper Bound on Capacity

We prove the upper bound by a cut argument on the graph
representing the hybrid network. Consider the network in Fig.
4 (a), where the cut Γ1 partitions the nodes into two subsets:
one to the left and the other to the right of the point n/2,
denoted by Γl

1, Γr
1, respectively. Γl

1 includes the ad hoc nodes
and the b/2 base stations in the left half of the interval, Γr

1

includes the rest of the nodes. The “cut capacity” of Γ1 in the
direction from left to right is the sum of the bandwidths on the
links crossing the cut in this direction, and it gives an upper
bound on the rate of information that can be carried from left
to right in the network. The wired network crosses the cut by
a single link with bandwidth f . The ad hoc wireless network,
on the other hand, can achieve only one transmission across
the cut at a given time, resulting in a bandwidth of 1 [14].
There are Θ(n) source-destination pairs that need to cross the
cut from left to right w.h.p. Hence, the per-node throughput
T (n) is upper bounded by Θ(1/n+ f/n) = Θ(f/n).

For the same network, consider the cut Γ2 (Fig. 4 (b)).
Γ2 partitions the network into two subsets Γl

2, Γr
2, where Γl

2

f(n)

0 n

f(n)

(a)

(b)

f(n)

0 n

f(n)

n/2

n/2

1Γ

2Γ

0 n

*sΓ (c)

Fig. 4. Three cuts are shown on the 1-D dimensional network. The first cut
Γ1 partitions the network into two halves: the ad hoc nodes and base stations
to the left and to right of the point n/2, respectively. This cut is crossed by
one wired and one wireless link from left to right, hence the cut capacity is
Θ(1+ f) which serves Θ(n) nodes w.h.p. The cut Γ2 has the ad hoc nodes
to the left of the point n/2 on one side, and the rest of the ad hoc nodes
and all base stations on the other side. This cut is crossed by b/2 node-to-
base-station wireless edges, and one node-to-node wireless edge resulting in
a capacity of Θ(1 + b/2), which again serves Θ(n) nodes w.h.p. The last
cut is drawn around the ad hoc nodes in the cell with the most number of
nodes. This cut can be crossed by at most three wireless edges resulting in a
capacity of Θ(3), which serves Mb nodes. When b log b = O(n), Mb scales
as n/b giving the same per-node throughput upper bound as Γ2.

includes the ad hoc nodes in the interval to the left of the
point n/2. Γr

2 includes the remaining ad hoc nodes and all
base stations. Consider the cut capacity of Γ2 in the direction
from Γl

2 to Γr
2. All the links crossing the cut are wireless

links with bandwidth capacity of 1. For the parts of the cut
surrounding the b/2 base stations, note that there can be at
most one transmission at a given time to cross the cut to reach
from a node to a base station, resulting in a capacity of b/2.
In addition, there exists one link crossing the cut through the
ad hoc network. There are Θ(n) source-destination pairs that
need to cross the cut from Γl

2 to Γr
2 w.h.p. Hence, Γ2 upper

bounds the per-node throughput by Θ(1/n+b/2n) = Θ(b/n).
Finally consider a third cut drawn around the nodes in the

busiest cell. In particular, let si = [(i−1)n/b, in/b] be the ith
cell 1 6 i 6 b. For a given placement of nodes, let s∗ be the
cell with the maximum number of nodes, denoted by Mb. Let
the cut Γs∗ divide the network into two regions (see Fig. 4 (c)):
Γi
s∗ , which includes the ad hoc nodes inside s∗, and Γo

s∗ which
includes the rest of the nodes and all base stations. The cut
capacity of Γs∗ in the direction from Γi

s∗ to Γo
s∗ upper bounds

the rate of information that can be carried away from the nodes
inside s∗. The cut can be crossed in the direction to the base
station or by ad hoc transmission to neighboring cells, with
each crossing having a capacity of 1. Hence, Γs∗ upper bounds
the per-node throughput by Θ(3/Mb). As proved in Lemma
1, in the case b log b = O(n), Mb scales with n/b, hence Γs∗ ,



brings the same upper bound (in the order sense) with Γ2. On
the other hand, when b log b = w(n), Mb deviates from the
mean and scales with h(b) defined in (2), which asymptotically
dominates n/b and brings a per-node throughput upper bound
that scales with 1/h(b) for these nodes. In other words, when
b log b = w(n) the throughput achieved by nodes in the busiest
cell determines the overall per-node throughput. Finally, the
overall per-node throughput upper bound can be found by
considering all cuts giving the values in Theorem 1.

B. Achievability

We present a construction that describes how information
is carried between source-destination pairs, and then calculate
the throughput achieved by this construction, which gives a
lower bound. Note that this construction is similar to the one
presented in [13].

First, the interval [0, n] is divided into small “segments” of
length log n, the first segment being [0, log n] (see Fig. 5). It
can be easily verified that each segment contains at least one
node w.h.p. For ad hoc communication, data is carried through
multihop where each time data is delivered to a node inside
the next segment on the route. Note that segments are different
from “cells”, the subintervals of length n/b. Data is delivered
from a source node to a destination node in three steps.

f(n) bps

0 n

f(n)

log n

cell size = n/b

Upload Phase

Fig. 5. The 1-D network consists of b cells of each length n/b (top figure).
A source node sends its packet to a destination node in three steps. In the
upload phase, the packet is delivered to the closest base station through
multihop communication (bottom figure). The packet is then carried through
the wired network to the destination base station, which delivers the packet
to the destination node following the reverse of the operation in the upload
phase (not shown).

1) Upload Phase: The source sends the packet to the closest
base station through multihop, where the packet is
delivered to the next segment at each hop until it reaches
the base station (see Fig. 5). Note that the cells become
smaller than the segments in the case n/b ≤ logn, and
nodes reach the base station in one-hop.

2) Wired Phase: The packet is carried through the wired
network until it reaches the base station which is closest
to the destination node.

3) Download Phase: The base station closest to the desti-
nation node delivers the packet to the destination node
using multihop transmission by nodes in each segment.
Note that if the base stations have enough power to reach

the whole cell, this phase can be done with broadcast
instead. However, this does not change the scaling result.

Having defined the routing part of the construction, we
next describe how to schedule transmissions for each phase
using time division multiplexing. In the upload and download
phases, nodes relay information for other nodes. Due to
interference, nodes inside adjacent segments cannot transmit
simultaneously. However, a standard spatial reuse scheme
can be used where time is divided into slots and segments
sufficiently far apart can be active in the same time slot.
In particular, it can be shown that there exists a constant
(independent of n) integer d, such that time every segment
can transmit once at the end of a total of d time slots (e.g.,
see Appendix A in [13]). The upload phase is completed once
the segments finish relaying all the packets. A segment needs
to relay information for at most all the nodes inside the cell.
Hence, the number of nodes in a cell determines the number
of time slots needed to finish its upload phase. Therefore,
overall the upload phase can be finished in dMb time slots,
where Mb is the number of nodes in the busiest cell. Hence,
the throughput constraint achievable in the upload phase is
Θ(1/Mb). As shown in Lemma 1, 1/Mb scales as b/n when
b log b = O(n), and scales with 1/h(b) otherwise, where h(b)
is defined in (2). Note that the download phase brings the same
throughput constraint.

In the wired phase, the links between base stations can be
active simultaneously. Hence, the time needed to complete the
wired phase is solely determined by the relaying load on the
base stations. A base station needs to deliver information for
at most all nodes in the network, which is sent at a rate f(n)
bits per second. Hence, the throughput achieved in the wired
phase is Θ(f(n)/n). Finally, the throughput achieved by this
construction as a whole is given by considering the throughput
constraint coming from all three phases, giving a lower bound
of Ω(min{1/Mb, f/n}) w.h.p. �

V. TWO-DIMENSIONAL NETWORK

Our main result for the two-dimensional hybrid network is
given in Theorem 2 in Section II-C. The upper bounds and
the achievability construction are very similar to the 1-D case,
and here we only emphasize the differences. Remember that
Lemma 1, which states how the maximum number of nodes
in any cell scales, also applies to the 2-D case.

Proof of Theorem 2:

A. Upper Bound

Consider the cut Γ1 given in Fig. 6 which divides the region
into two halves. On one side of the cut we have the set Γl

1,
which consists of ad hoc nodes and b/2 base stations that are
inside the left half region of size

√
n/2 ×

√
n. On the other

side, Γr
1 includes the rest of the ad hoc nodes and the remaining

b/2 base stations. Consider the cut capacity in the direction
from Γl

1 to Γr
1. The wired network crosses the cut with

√
b

links each with capacity f . On the other hand, wireless links
between ad hoc nodes can be shown [14] to achieve at most√
n bps across the cut Γ1. There are Θ(n) nodes which need
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Fig. 6. Cuts Γ1 and Γ2 shown on the two-dimensional network. The cuts
are defined as similar to the case in 1-D shown in Fig. 4.

to cross the cut in this direction w.h.p. Hence the per-node
capacity upper bound due to Γ1 is Θ(

√
n/n+

√
bf/n).

The second cut Γ2 is defined in a similar way to the 1-D
case and is shown in Fig. 6. On one side of the cut, we have the
subset Γl

2, with the ad hoc nodes in the left half of the square.
On the other side, the subset Γr

2 consists of all base stations
and the remaining ad hoc nodes. The cut capacity in the
direction from Γl

2 to Γr
2 consists of only wireless connections.

Across the part of the cut surrounding the b/2 base stations,
the ad hoc nodes can achieve a constant rate to each base
station resulting in a capacity of b/2. For the pure ad hoc
communication across the rest of the cut, again we have a
capacity of

√
n as for the first cut. Hence, the cut capacity

due to Γ2 is Θ(
√
n/n+ b/2n).

A third cut can be drawn around the ad hoc nodes in the
busiest cell, which includes Mb nodes, as done in the 1-D case
(see Fig. 4 (c) for the 1-D cut, the cut for 2-D is not shown).
However, the difference in the 2-D case is that these nodes can
cross the cut to outside the cell with a total rate proportional to
the edge length of the cell,

√
n/b, as opposed to the constant

rate in the 1-D case. This results in a per-node capacity of
Θ(

√
n/b/Mb) for these nodes, where Mb scales as stated in

Lemma 1, giving the upper bound stated in Theorem 2 for the
case b log b = w(n).

B. Achievability

The construction giving the lower bounds to the 2-D ca-
pacity is similar to the 1-D case, where the source delivers a
packet to a destination in three phases. The only difference in
the 2-D case is that, this time we divide the whole network
into “squarelets” of size

√
log n×

√
logn as shown in Fig. 7.

It can be shown that each squarelet includes at least one node
w.h.p. In the upload phase, the source delivers the packet to
the closest cell by multihop communication which follows a
route consisting of straight lines as shown in Fig. 7. By a time
division multiplexing scheme similar to the 1-D case, it can

Source 

cell

f(n)

n

n

Destination 

cell

Upload Phase in 

the source cell

Source node

log n

/n b

/n b

Fig. 7. The region is divided into b cells, each of size
√

n/b×
√

n/b (top
figure). A source node sends its packet to the destination in three steps. In the
upload phase, the source node delivers the packet to the closest base station
through multihop communication (bottom figure). In the wired phase, the
packet is delivered from the source base station to the destination base station
on a vertical route followed by a horizontal route (top figure). The download
phase follows the reverse operation of the upload phase (not shown).

be shown that the upload phase can be finished in Mbd time
slots, for some integer d. Hence, the throughput achievable
in the upload phase is Θ(1/Mb), which is the same as the
download phase. In the wired phase, the packets are delivered
from the source base station to the destination base station
on a route which consists of a vertical path followed by a
horizontal path as shown in Fig. 7. Therefore, a base station
has to deliver packets from cells that are in the same row or
column with it. Hence, the relaying load on a base station is
equal to the number of nodes inside the union of a horizontal
strip and a vertical strip, each of size

√
n/b ×

√
n. It can

be shown that, these strips have at most a constant factor of
n/

√
b nodes w.h.p. (proof is omitted due to space constraints).

The packets coming from these nodes are served by a link of
bandwidth f , hence the throughput achievable in the wired
phase is Θ(

√
bf/n). Therefore, this construction achieves a

throughput of Θ(min{1/Mb,
√
bf/n}), which improves on

the pure ad hoc capacity only if min{1/Mb,
√
bf/n} scales

faster than 1/
√
n. Hence, the lower bounds in 2-D capacity

is achieved by using pure ad hoc communication [18] when
b = O(

√
n) or

√
bf = O(

√
n), and by using the above three-

step construction otherwise. �



VI. CONCLUSION

We study the capacity of hybrid networks, where n wireless
nodes share information in a network supported by a wired
infrastructure of b base stations. Our work establishes an
upper bound on per-node throughput that can be achieved
by the nodes using recent cut-set results shown for pure ad
hoc networks. Our upper bounds match previously shown
lower bounds for a wide range of values of b where b log b
grows more slowly than n. We further study the extreme case
where b grows almost on the same order with n. Through a
theoretical study of the maximum of a sequence of Poisson
random variables, we show that, in that case, there exists a
base station which has to serve too many nodes compared to
the rest of the base stations. Hence, in that case the overall
per-node throughput is determined by the throughput that can
be achieved by nodes serviced by this busiest base station.
With this result, we obtain matching upper and lower bounds
on the capacity of hybrid networks for all values of b in
the 1-D case, and for the values b log b = O(n) in the
2-D case. Other interesting directions involve the cases of
random/arbitrary placement of base stations, and the better
modeling of packet transmission through the wired network
with existing protocols.

APPENDIX I

First, define the tail function Fb = 1 − Fb. As in [17],
we associate the following continuous function to the exact
function Fb, which agrees with Fb at integer values.

Fc,b(x) = e−λbλx
b

∞∑
j=1

λj
b/Γ(x+ j + 1), (5)

where Γ is the gamma function. Finally, define the sequence
of real numbers {βb, b = 1, 2, · · · } by the following relation:

1/b = Fc,b(βb) (6)

Note that the function Fc,b is strictly decreasing, hence βb

is a growing sequence. In [15], it is shown that the integer
sequence Ib is given by Ib = ⌊β + 1/2⌋. Therefore, the
asymptotic behavior of Ib can be found by finding the growth
rate of βb.

By taking logarithms of both sides in (6),

log b = λb − βb log λb − log
∞∑
j=1

λj
b/Γ(βb + j + 1) (7)

We do an asymptotic analysis on the above equation to analyze
the growth rate of βb. We first make the observation that, as
b grows, the first term in the summation in (7) dominates the
sum of the rest of the terms. This can be found by using
the fact that for any y > 0, Fc,b(x)/Fc,b(x + y) → ∞, as
x → ∞ [16]. The dominance result then follows by using
y = 1, x = βb. Hence, we may keep only the first term in the
summation above and get

log b ∼ λb − βb log λb − log λb + log Γ(βb + 2) (8)

Then we proceed similarly. First, keeping the most dominant
term in Stirling’s approximation to the gamma function,

log b ∼ λb − βb log λb − log λb + βb log βb. (9)

Finally, for the terms on the right hand side above, we look
for the most dominant term(s). It is shown in [16] that βb

is asymptotically dominant to λb. (Note that log βb does not
necessarily dominate log λb). Hence we are left with

log b ∼ βb log βb − βb log λb (10)

From above, finally it can be shown that βb satisfies

βb ∼
log b

log( log b
λb

)
. (11)
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[3] A. Ozgur, O. Lévêque, and D. Tse, “Hierarchical cooperation achieves
optimal capacity scaling in ad hoc networks,” IEEE Trans. Inf. Theory,
vol. 53, no. 10, pp. 3549–3572, 2007.

[4] B. Liu, Z. Liu, and D. Towsley, “On the capacity of hybrid wireless
networks,” in INFOCOM 2003, vol. 2, march-3 april 2003, pp. 1543 –
1552 vol.2.

[5] O. Dousse, P. Thiran, and M. Hasler, “Connectivity in ad-hoc and hybrid
networks,” in INFOCOM 2002, vol. 2, 2002, pp. 1079 – 1088 vol.2.

[6] U. Kozat and L. Tassiulas, “Throughput capacity of random ad hoc
networks with infrastructure support,” in Proc. of MobiCom. ACM,
2003, pp. 55–65.

[7] A. Zemlianov and G. de Veciana, “Capacity of ad hoc wireless networks
with infrastructure support,” Selected Areas in Communications, IEEE
Journal on, vol. 23, no. 3, pp. 657 – 667, march 2005.

[8] S. Toumpis, “Capacity bounds for three classes of wireless networks:
asymmetric, cluster, and hybrid,” in Proceedings of the 5th ACM
international symposium on Mobile ad hoc networking and computing.
ACM, 2004, pp. 133–144.

[9] A. Agarwal and P. Kumar, “Capacity bounds for ad hoc and hybrid
wireless networks,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 3, pp. 71–81, 2004.

[10] X. Mao, X. Li, and S. Tang, “Multicast capacity for hybrid wireless
networks,” in Proceedings of the 9th ACM international symposium on
Mobile ad hoc networking and computing. ACM, 2008, pp. 189–198.

[11] X. Chen, W. Huang, X. Wang, and X. Lin, “Multicast capacity in
mobile wireless ad hoc network with infrastructure support,” in Proc. of
INFOCOM, 2012.

[12] W. Shin, S. Jeon, N. Devroye, M. Vu, S. Chung, Y. Lee, and V. Tarokh,
“Improved capacity scaling in wireless networks with infrastructure,”
IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5088–5102, 2011.

[13] B. Liu, P. Thiran, and D. Towsley, “Capacity of a wireless ad hoc
network with infrastructure,” in MobiHoc ’07. New York, NY, USA:
ACM, 2007.

[14] J. Liu, D. Goeckel, and D. Towsley, “Bounds on the throughput gain
of network coding in unicast and multicast wireless networks,” Selected
Areas in Communications, IEEE Journal on, vol. 27, no. 5, pp. 582
–592, june 2009.

[15] C. Anderson, “Extreme value theory for a class of discrete distributions
with applications to some stochastic processes,” Journal of Applied
Probability, pp. 99–113, 1970.
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